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The entire free-surface elevation field of a rotating fluid in the laboratory can be
imaged and analysed, by using it as a parabolic Newtonian telescope mirror. This
‘optical altimetry’ readily achieves a precision of better than 1 µm of surface elevation.
The surface topography corresponds to the pressure field just beneath the surface.
It is the streamfunction for the geostrophic hydrostatic circulation, which can be
resolved to better than 0.1 mm s−1. Still and animated images thus produced, of the
entire surface elevation field, are of value in themselves, and using a projected image
(a speckle pattern), have the promise of providing quantitative slope and height field
data recovered by PIV (particle imaging velocimetry) techniques. With homogeneous
fluid, geostrophic flow is the same at all depths. Yet of equal interest are sheared
stratified rotating flows where the surface pressure is associated with inertial waves,
convection, and other motions, geostrophic or ageostrophic.

Although the technique is designed for experiments in which Coriolis effects are
strong, it is possible to use reflective imaging for flows at such high Rossby number
that Coriolis effects are negligible, and hence this becomes a tool of more general
interest in non-rotating fluid dynamics (for example, illuminating surface gravity
waves).

Examples are given, involving (i) the Taylor–Proudman effect with very slow flows
over topography; (ii) quasi-geostrophic and inertial-wave flows over a mountain
(f -plane); (iii) inertial waves generated by oscillatory forcing; (iv) Kelvin waves (v)
free oscillatory Rossby waves on a polar β-plane; and (vi) stationary waves, blocking,
jets and wakes with β-plane zonal flow past a mountain. Movies are available with
the online version of the paper.

1. Introduction
In atmospheric and ocean circulations, pressure is a primary dynamical field. At

large length and time scales, geostrophic- and hydrostatic balance relates pressure
to velocity and density fields, yet with pressure significantly ‘red-shifted’ to longer
horizontal length scales. In meteorology, maps of pressure (or equivalent dynamic-
height) form the central presentation of the circulation. In oceanography, which
classically has mapped temperature and salinity fields, the lack of a known reference
pressure field for integration of the hydrostatic/geostrophic balance equations has
greatly hindered progress. Thus, one of the most valuable new tools of observational
oceanography is satellite altimetry, with which the sea-surface height, and hence the
subsurface hydrostatic pressure, is measured by timing a radar beam pulsed from
above. Since 1992, the TOPEX/Poseidon, JASON and ERS satellites have provided
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global maps of the world’s sea surface. This singular achievement has made synoptic
oceanography a possibility (e.g. Fu & Cazenave 2001).

In the geophysical fluid dynamics (GFD) laboratory, remote sensing and ‘global’
measurements of entire fluids are rare, and this is one reason why there are few such
laboratories. Imaging of particle motions does provide streak patterns and quantitative
velocity fields in two or even three dimensions, using various forms of particle imaging
velocimetry (PIV), including holographic imaging (for a summary see Adrian 2005).
These are exciting and effective techniques, yet there is a trade-off between resolution
and scope, so that the coverage achieved for large fluid experiments can be limited.

As with the world ocean, the free-surface elevation, η, in a laboratory experiment is a
field of great interest. Its measurement could give us the field geostrophic circulation,
as well as tides, ageostrophic surface waves, and the surface pressure associated
with internal waves, convection and turbulence. With homogeneous-density fluid
dominated by geostrophic hydrostatic barotropic motions, the interior circulation
(outside of Ekman boundary layers) is two-dimensional, and the field of η describes
it completely. Analogous to satellite altimetry, a laser beam, reflected from a point on
the free surface, returns slope data. Dabiri & Gharib (2001) develop and demonstrate
this technique as a ‘free-surface gradient detector’ which has great promise, and can
be scanned across a fluid surface in the same spirit as satellite ocean altimetry. They
also describe colorimetric methods for imaging the slope field.

However, a rotating fluid presents another opportunity: the particular geometry of
the free-surface paraboloid in solid-body rotation suggests a global imaging technique,
in the spirit of a Newtonian reflecting astronomical telescope (Newton & Huygens
1672). In constructing such a telescope, a lathe-like device can be used to mill the
original blank, of ordinary glass or Pyrex. (A classic technique has made use of rotation
and gravity more creatively to create a paraboloidal blank: molten glass is rotated and
allowed to solidify.) A small light source, reflected in this surface, provides information
about the spatial integrity of the paraboloid. Imperfections are polished out, using
abrasives with successively finer grit. Optical tests, associated with the names Foucault
and Ronchi, readily map the surface irregularities. In the Ronchi test, a grid of finely
ruled straight lines is placed just beneath the light source, and projected on the surface.
The reflected image, viewed through the Ronchi grid, provides a sensitive interference
pattern. By working with this image of the grid, surface imperfections at all scales
can be greatly reduced, and amateur telescope makers readily achieve accuracies
of 1/8 wavelength of light (∼0.1 µm or 100 nm). Foucault’s test reveals the asph-
erical shape of the blank, with precision close to 1 nm (∼1/700 wavelength of light).

Here it is the ‘imperfections’ on the parabolic surface that interest us. The same
optics used to polish telescope mirrors finely can produce still images, animations
and quantitative maps of surface elevation relative to the mean paraboloid. There is
much detail to consider, but this is the essence of optical altimetry. In this paper, we
first describe the new observational technique, which can be called altimetric imaging
velocimetry (AIV), and demonstrate its sensitivity with extremely weak flows. The
emphasis here is qualitative still and animated images, but we give also preliminary
results on the quantitative mapping of the surface height field using the deformation
of a speckle-image. We then illustrate the pressure fields accompanying very slow flow
over an obstacle, inertial waves, Kelvin waves and rotating convection. Rossby waves
exist naturally in this setting, as a rotating paraboloidal fluid volume is essentially a
polar β-plane. Rossby waves are viewed both as oscillations in a fluid at rest (in the
rotating reference frame), and as standing waves with jet-like features in a model of
the atmospheric circulation past a mountain.
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2. Experimental technique 1. Qualtitative optical altimetry
The rotation/gravity potential, Φ , for a rotating fluid in the laboratory is given by

Φ = − 1
2
Ω2r2 + gz,

where Ω is the rotation rate, r is a radial coordinate, z a vertical coordinate, and
g is gravitational/rotational acceleration (the magnitude of the gradient of the ‘big’
geopotential of the Earth). Surfaces of constant Φ are also surfaces of constant
density and pressure for a stratified fluid at rest in the rotating frame. The free-
surface equipotential lies at

z = H + 1
2

Ω2

g

(
r2 − 1

2
a2

)
,

where H is the mean water depth (equal to the volume of water divided by surface
area), and a is the radius of the cylinder. As the rotation rate is changed, the free
surface pivots about the radius a/

√
2. The optical focus of the paraboloid lies at the

vertical height where its slope is unity, at

Zf ≡ z − z(r = 0) =
1

2

g

Ω2
.

The radius of curvature at the centre, ZC , is twice this value,

ZC = (Zrr )
−1 =

g

Ω2
= 2Zf .

The absolute height of the focus above the base of the fluid is given by

H +
g

2Ω2
− Ω2a2

4g
.

2.1. Optics

Light from a point source high above the rotating table reflects from the water
surface and converges on the parabolic focus. Surface topography distortions relative
to the mean parabola deflect the light beam. A camera placed at the focus will ideally
see the entire surface bathed in light, yet with brightness anomalies dependent on
perturbations of the surface curvature. If the point light-source is moved downward
toward the surface, the focal point moves upward from Zf to the centre of curvature
of the apex, 2Zf . A point light-source at finite height above the surface no longer
has a sharp focus; ray-tracing calculations show that the disk of light produced
by a source at the centre of curvature has diameter 2.94 cm, for the parameters of
our experiment: a 1 m diameter cylinder rotating with Ω =2.2 s−1. The sharpness of
focus improves rapidly with increasing height (figure 1); for a light source at height
four times the focal height, the diameter is 0.5 cm. In practice the focal diameter is
significantly smaller than these calculations show, owing to intensity variations across
the image.

If instead of being parabolic, the free surface were spherical, such a light source
located at the centre of curvature, z = ZC , would return all rays to a perfectly sharp
focus; conversely a light source at infinity would return an imperfect focus at height
2ZC . Rays from infinity striking the hemispherical mirror at azimuthal angle α (the
angle, relative to the incoming ray, of a radius to the point of impact of the ray)
reflect and intersect the mirror axis at height

Zf = ZC

(
1 − 1

2 cosα

)
,
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Figure 1. Diameter of focused light with point source on the axis of a 1 m diameter paraboloid
and a distance Zs above the surface; Zf is the focal height, here 1 m. The analytical expression
is given in Appendix C.

which lies at or below half the centre of curvature. The angle between incident and
reflected rays is 2α. There is thus a caustic bright spot at z = ZC/2, yet rays intersect
the axis all the way to z = 0. The focus is sharp if α is small. In this limit, the classic
formula relating source distance, Zs , image location Zi , and approximate focal length
z = Zf is

1

Zs

+
1

Zi

=
1

Zf

.

This is known as the ‘paraxial approximation’. Many elementary optics
demonstrations ignore these aspects of imperfect focusing.

The paraboloid and sphere are complementary in the sense that the paraboloid
perfectly focuses light from a point source on the axis at infinity whereas a spherical
mirror perfectly focuses light from a source at its centre of curvature. The comple-
mentary property is used to construct telescope mirrors, which often begin life as
spherically milled Pyrex blanks. These are then ground and polished to parabolic
shape. Some of the sensitive optical tests rely on the radius of curvature of the
paraboloid decreasing with distance away from its apex, so that a ringed zone of
focused light (the ‘null’) appears with the source at the centre of curvature.

2.2. Surface deflections

Any circulation or wave that causes the water surface to deflect, whether geostro-
phically balanced or not, will register on the image. Reflected rays diverge above a
hill and converge above a dip. To reveal surface slope, these rays are collected into
the lens of a camera. This is generally easy since the bundle of rays is small compared
to the aperture of the lens as defined by the iris diaphragm. At this point, surface
aberration of the experimental surface will not change the intensity of light falling
into the image so long as all the rays enter the iris. A pin-hole camera (a small
aperature) will begin to reveal irregularities in the parabolic shape, yet with a larger
aperature one would see, say, the circular image of the tank uniformly illuminated.
The real analysis begins with a knife-edge barrier placed at the singular point where
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Figure 2. Sketch of light rays reflecting from a mirror: either a spherical mirror with point
light source at its centre of curvature or a paraboloidal mirror with source (not shown) at
infinity. All reflected rays converge at the focus, and to an observer just behind the focus the
mirror appears uniformly bright. A knife-edge barrier can partially obscure this bright disk,
yet as it moves toward the focal point it can uniformly dim the image, giving great sensitivity
to imperfections on the mirror surface (after Barbour 2000).

all the rays converge (figure 2). By slight lateral motion of the blade toward and
away from the bundle of rays, we can interrupt all or none of the rays. The effect
of this slight movement of the knife-edge will be to make the entire camera image
go uniformly from dark, through grey to light. This hints at great sensitivity to slight
variations in curvature of the reflecting surface. Our discussion applies accurately if
the light source were at infinity, or if the surface were spherical with the light source
at its centre of curvature.

To proceed, the blade is adjusted to interrupt half of the rays and so the entire
image is lit uniformly at one-half intensity (figure 2). Slight motion of the blade
toward the spherical surface still interrupts half the light, but the camera image shows
a fully illuminated half circle; the remainder of the circle is fully dark. The darkened
side of the mirror is on the same side as the blade approached the bundle of rays.
Oddly, if the blade is moved back through the convergence point for the rays and
continues to a point farther from the mirror, a similar image forms, but the lighted
side is swapped for the darkened side. This behaviour is used to locate the real
convergence point.

In practice, it is convenient to place the light source at a height about twice the
focal height of the parabolic surface, hence at the centre of curvature of the apex of
the parabola. For qualitative imaging, the imperfect focus is not a serious problem,
and the camera aperature can serve as the knife-edge. For greater sensitivity with
smaller dynamical features, we have employed optical corrective measures, to alleviate
the spherical aberration when it became desirable and increase the sensitivity of
the altimetry measurement (figure 3). This involves directing a small LED light source
upward to a 15 cm diameter spherical mirror, the reflected ray thence illuminating the
water surface below. The system is so sensitive that a typical (few mW output) LED
makes a bright image at the camera, even though the laboratory appears totally dark
to an observer. Further detail can be found at the GFD web site and Wiki (Rhines
2006a, b).

As described above, the potential sensitivity of this method is much better than
1 µm of fluid surface elevation, far more than necessary for typical rotating fluid
experiments. The fluctuations of interest, between 1 µm and 1 mm, permit us to
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(a) (b)

Figure 3. Configurations for the present experiment. The simplest method (a) has a broad
light source (an incandenscent bulb) at twice the focal height of the surface, with the adjacent
camera iris acting as a knife-edge. Light source and camera are symmetrically displaced off
the axis. For greater signal resolution (b), a knife-edge barrier (filled triangle) is added, and a
spherical correction mirror with a small upward directed light source (a white LED) of very
low power. Here the reflected rays converge to a sharp focus.

desensitize the optics. Spherical aberration becomes of less consequence. Large light
sources, 1 cm or more in width with variation in intensity across their surfaces reduce
the sensitivity by several orders of magnitude. Our first experiments used a small
incandescent light bulb and were very successful without any corrective mirrors.

The typical experimental configuration is a 1 m diameter cylinder with 15 cm of
mean water depth, rotating at about 2.2 rad s−1. This locates the focus Zf at 1 m above
the water at the centre. The centre of curvature at the rotation axis, ZC , is 2 m. The
light source and camera are located just above this point, slightly off the rotation
axis, about 2 m above the water surface. A plate glass lid isolates the water from wind
effects, although experiments without a lid are still effective.

The discussion above provides the basis for qualitative imaging of the free surface,
which reveals much about the dynamics. Quantitative measurement of the elevation
of the free surface will give us the field of geostrophic streamfunction, ψ =p/ρf

where p is pressure and ρ is density. This requires the use of imaging techniques,
which are described in § 4. The slope of the surface gives the geostrophic velocity,
ug = ẑx(ρf )−1 ∇p = ẑx(g/f )∇η, where z is a vertical unit vector. The free surface of a
geostrophically balanced flow of 1 mm s−1 has a slope f U/g ∼ 10−4, for values of the
Coriolis frequency f ∼ 1 s−1, U (the scale horizontal velocity) ∼10−3 m s−1. This slope
produces a surface height perturbation of 10−6 m, or 1 µm, over a horizontal scale,
L ∼ 10−2 m. Slow flows thus require a sensitive scheme for observing the free-surface
elevation. In typical rotating GFD experiments, one deals with flows from 0.1 mm s−1

to 1 cm s−1 and rotation rates ranging from 0.1 to 3 s−1, with scales L from 1 mm to
1m. Over this large range the scale free-surface elevations are 2×10−9 m to 5×10−3 m,
all of which are small.

Gravity waves, ageostrophic surface waves, internal convection and turbulence all
have expression in the surface elevation and can be sensed with this method. The
fluid surface in a typical laboratory is subject to vibration, tides (owing to imperfect
alignment of the rotation axis or wobble) and wind-generated waves. Yet they occur
at high frequency, and are readily filtered out. Specialized configurations yield optical
images which lend themselves to quantitative analysis. These will be described after
illustrating the experiments.
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Figure 4. ‘Waffle’ grid used as a topography on the floor of the experimental cylinder, in
water 15 cm deep. The cells are 1 cm in width and height.

2.3. Other supporting measurements

While observing the water surface displacement we can also follow marked fluid
particles and dyes in the standard fashion. A set of fluorescent lights is mounted on
the rotating table and by varying this illumination we can observe dye and particles
separately or in combination with the altimetric field. In principle, we could subtract
standard particle imaging velocimetry (PIV)-based velocity and altimetric geostrophic
velocity to obtain the ageostropic velocity field, but we have not attempted this.

3. Illustrative experiments
3.1. Waffle-grid ‘mountain’ and Taylor columns

We have argued that deflections of the fluid surface of order 1 µm (10−6 mm) are
readily observed using optical altimetery, based on the focusing property of the
optically corrected paraboloidal surface, amplified by a knife-edge partial barrier.
To demonstrate this sensitivity we show the effect on the water surface of a gentle
horizontal flow over a 10 cm diameter plastic grid, comprised of many 1 cm cubical
elements (figure 4). From tracked particles, the flow speed ranged between 0.5 and
1 mm s−1. With table rotation rate Ω = 2.2, the Rossby number based on the grid
spacing was 0.01 to 0.02, suggesting that rotationally stiffened Taylor–Proudman
columns could appear even at the scale of the grid.

The first image (figure 5a) shows the water surface to be deformed into a nearly
perfect replica of the waffle grid, which lay some 15 cm beneath the surface. A
small lump of clay in one of the cells also makes a visible imprint on the surface.
Surrounding this pattern is the ‘global’ response of the free surface, with a crescent-
shaped high pressure as if it were a mountain. Figure 5(b), with slightly higher
velocity, shows a more distorted image of the grid and also ring-like wave crests on
the surface. These are inertial waves excited by a slight tide in the cylinder. A wake
appears in the lower part of the image.
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(a) (b)

Figure 5. In this and the succeeding images of the free surface, only the free-surface elevation
is seen (one cannot see objects beneath the surface). Free-surface image of weak flow above
the grid shown in figure 4; (a) with very weak flow (∼0.5mm s−1) the surface deflection
closely resembles the grid below; (b) slightly faster flow distorts this Taylor-column image, and
circular inertial wavecrests forced by weak tidal oscillations appear around it. In both images
a geostrophic wake forms downstream of the grid. (Note, the surface deformations are not
ripples or gravity waves.)

The image at finite Rossby number may be understood by interpreting Taylor
columns as low-frequency standing inertial waves. As the horizontal flow increases in
speed, the vertical columns are tipped over by an angle tan−1 (Uk/2Ω); when small,
this angle is just equal to the Rossby number, U/2ΩL, based on the horizontal length
scale L = k−1 (k is the horizontal wavenumber; see Hide, Ibbetson & Lighthill 1968;
Lighthill 1978).

3.2. The texture of the fluid’s free surface: lee inertial wakes and Taylor columns

Numerous kinds of fluid motion become visible in images of the surface displacement.
When the fluid sweeps round after a change in rotation rate, Ω , in the presence of
mountain-like objects at the base of the fluid, we see waves and signatures of advection.
In figure 6, what look like gravity waves are in fact inertial waves. Here the fluid is
moving clockwise over two obstacles, the ‘waffle’ grid in figure 4, at 9 o’clock, and
a 14 cm. diameter, 0.6 cm tall spherical-cap mountain at 2 o’clock. The ‘waffle’ grid
excites a small-scale wake (recall that the grid is 1 cm high, in a fluid depth of about
15 cm). Animated movies make it clear that this wake is dominated by inertial waves,
which ideally would have semi-circular wave-crests (the shape of the wavenumber
locus for a steady oncoming flow being an ellipsoid with circular cross-section in the
horizontal wavenumber plane). In fact, in this experiment, the zonal flow is being
oscillated about zero, modulating the standing-wave field. The wave crests propagate
opposite to the group velocity, as predicted. The second mountain, the spherical cap,
has a dome of high pressure and anticyclonic flow forming a single Taylor column
above it. Much weaker inertial waves occur downstream, than are seen behind the
‘waffle-grid’ mountain, which excites higher-wavenumber energy. A cyclonic vortex is
also present, shed from the mountain on the right-hand side.
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Figure 6. The texture of the free surface (and the subsurface pressure field, and the geostrophic
streamfunction) for a homogeneous rotating fluid excited by flow over two obstacles on the
bottom: a spherical-cap mountain (at 2 o’clock) and the waffle grid shown in figure 4 (at 9
o’clock). The field is dominated by inertial waves in the wake of the mountain (not, as they
might appear, gravity waves) and geostrophic turbulence. This is virtually the first animated
image of the AIV field observed in our laboratory. The two circular obstacles have height
about 1/15 the mean fluid depth. A movie is available with the online version of the paper.

Let us examine a little more closely the components of altimetric images. The
topography of the water surface, relative to the mean paraboloid, appears with light
and shadow as if lit from an oblique angle. This angle is changeable, and depends
upon the exact location of the knife-edge. A simple ‘dome’ of free surface appears in
figure 7. Though a feature of the water surface, it nearly replicates the mountain at
the base of the fluid. There is a slow anticyclonic drift (clockwise) and this basin-scale
flow is perturbed by an anticyclone over the mountain (particle tracks are faintly
visible). It looks as if it is illuminated from about 7 o’clock. However, when its
amplitude increases, it begins to look more like a volcanic caldera, and this inner
depression can be an artefact of the imaging method (caldera-like features do occur in
reality, however, with transient flows containing a rim of high displacement encircling
a central low).

A synthetic image illustrating how this works (figure 8) is from a tutorial on
Foucault’s method (Barbour 2000). The ‘camera’ is located above the paraboloid,
adjacent to the source (and moves with it). A knife-edge is located at the centre of the
region of ray convergence (there is not a sharp focus for reasons described above).
The knife-edge passes through the central axis of rotation. In the first image, the
light-source, knife-edge and observer are located at the centre of curvature measured
at r = 0 (i.e. ZC = 2Zf ). The central region is then ‘nulled’, that is half the reflected
rays are blocked and half passed, yielding a region of uniform grey illumination (as
in figure 2). The dark left-hand semicircle is the image of the knife-edge, occulting
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Figure 7. A slow anticyclonic flow produces a surface deformation that closely resembles the
underlying mountain. An anticylonic vortex sits above the mountain, with a shear layer at its
rim. The Rossby number based on the diameter of the mountain is 4 × 10−3. The faint straight
lines come from imperfections in the Plexiglas lid, which are not present when plate glass is
used. Streaks show particle trajectories.

the rays reflected from the smaller curvature of the outer regions of the paraboloid.
In subsequent images the grey nulled zone becomes a fuzzy grey ring which moves
outward as the light, camera and knife-edge are all moved upward along the axis.

If this were a spherical mirror, the figure would show perfect half-circles of light
and dark which swap as the knife-edge moves from below the ray-convergence point
(the centre of curvature) to above it, and a uniformly illuminated grey disk when it is
at the convergence point (figure 2).

The visual impression is one of illumination from the right of, first, a hill, and then
a hill with a depression at its peak. This can lead to some confusion in interpreting
images, particularly as the amplitude of free-surface deformation becomes larger.
Optical correction can be used to simplify the images, as shown in figure 3. This is
done with all the figures in this paper except for figures 6 and 7.

Let us now return to inertial waves and Taylor columns. With a slower imposed
azimuthal flow (figure 9), a great deal of texture becomes visible. In this case, a
taller spherical-cap mountain (15 cm diameter, 4 cm high) sits at 2 o’clock. The table
rotation is gradually increased under computer control, making a nearly steady wake
flow at Ω = 2.2 s−1. The average angular velocity, δΩ , of the fluid is 3.7 × 10−2 s−1,
hence the Rossby number, Ro = δΩ/Ω =1.7 × 10−2. The Taylor cap is sharp-edged
and nearly stagnant, yet there is a signature of standing waves even above it. In the lee
of the mountain a striking inertial wave occurs. In a simple ray-tracing calculation,
the wave-crests would be semicircles. The circular geometry and dissipation alters
the pattern, but the most striking effect is the shear line, a feature of the mountain
wake, radiating from its inner extremity. Here the inertial waves are more persistant,



Optical altimetry 399

V V V V V

V V V V V V

Figure 8. The image of a perfect paraboloid, illuminated by a point light source (Barbour
2000). The six images begin with the source at the centre of curvature for the region near
the axis (twice the focal height, Zf ) and in subsequent figures the source and camera are
moved upward along the rotation axis. The dark region is the image of a knife-edge barrier
blocking half the reflected rays. The grey region is the null, where the radius of curvature of the
paraboloid matches the distance of light source, knife-edge and observer. The cross-sections
show the height of the paraboloid relative to an osculating sphere at the radius of the nodal
ring. This cross-section is a correct impression only if we take a sphere rather than a paraboloid
as the reference.

as if trapped and ducted in the cyclonic shear zone. Such an effect has been seen
in the stratified ocean, where f is the lower bound for internal waves rather than
with unstratified fluid where f is the upper bound. In the stratified case, anti-cyclonic
eddies are potential-well-like traps for near-inertial waves (Kunze & Boss 1998).

An unexpected texture occurred, with many small depressions in the fluid surface.
These are convective cyclonic vortices induced by surface evaporative cooling. They
are nearly ubiquitous in fluids open to a relatively dry atmosphere. We can easily
suppress them with a glass lid on the experiment. We choose to show them here
because they advect with the flow and are converted to roll convection cells in regions
of strong shear. By zooming in and adding dye tracer, their tornadic motion can be
seen.
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Figure 9. Anticyclonic flow past a mountain at 2 o’clock, Ro =1.7 × 10−2. A Taylor column
with stagnant, trapped fluid sits above the mountain; thus the slope visible is equal to that of
the mean background parabola. Standing inertial waves develop over and behind the mountain.
A sharp shear line circumscribes the fluid, at the poleward rim of the mountain. A complex
pattern of rotating convection cells is visible in the mottled ‘craters’ (cyclonic tornados) and
‘worms’ (convective rolls drawn out by shear). The inset shows particle trajectories, exposed
once per sec and, visualizing the flow above the mountain and in the inertial-wave wake.

3.3. Oscillatory inertial waves

To isolate inertial waves we use an oscillating sphere partially immersed in the fluid
(figure 10). Propagating waves were excited, with circular crests that sweep toward
the wavemaker with time, indicating the appropriate horizontal group velocity in the
opposite direction At low frequency, the ray paths are nearly vertical and hence the
waves penetrate only a short distance horizontally before being damped by friction
in the lower time-dependent Ekman layer. In fact, the number of wavecrests seen in
figure 10(a) is a sensitive measure of the dissipation, which is concentrated in the
boundary layer.

As the frequency was increased toward ω = 2Ω ≡ f in the three images, the ray
paths incline more horizontally, the wavelength increases and the lateral group velocity
increases. Wave reflection is evident in figure 10(b) and in then figure 10(c) a basin
mode has been established, with standing nodes, more clearly evident in videos
which suddenly begin to ‘blink’ at resonance. Waves with ω > 2Ω cannot propagate
(except as Kelvin waves at the side boundary and Poincaré waves, that is gravity
waves modified by rotation), and the observed disturbance is appropriately small
(not shown here). It is interesting that when floating particles are viewed as well as
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(a) (b) (c)

Figure 10. Internal inertial waves generated by an oscillating sphere, half immersed in the
fluid (top, b). With Ω =2.2, the inertial period π/Ω = 1.43 s. As the period decreases from
12 s (a) to 3.5 s (b) to 2.8 s (c), the waves have longer wavelength and propagate more rapidly
in the horizontal, with group velocity at a shallower angle to the horizon. Note the reflected
wave in (b). In animations, the phase propagation is strong in (b) yet (c) is close to the fixed
nodal pattern of a standing resonant mode ‘flashing’ on and off. Above ω = 2Ω there is no
propagation except as Kelvin and Poincaré waves. The slight mottled texture of the surface
arises from small cyclonic convection cells (‘tornadoes’) owing to surface evaporation, which
were discussed with figure 9. Phase propagation is indicated by the arrow.

the surface height field, we see the ‘elastic’ nature of the rotating fluid in the wave
band ω < 2Ω , with the phase of the particle orbits varying widely. Above the inertial
frequency, the particles move much more in phase with the forcing, as the fluid takes
on the duller nature of a spatial harmonic function everywhere in phase with the
forcing, and in patterns that die away strongly with distance from the wavemaker.

3.4. Kelvin waves

Another important non-geostrophic mode is the Kelvin wave, essentially a long gravity
wave trapped by rotation. They can be trapped along a rigid lateral boundary as
with the ocean tides, or along the Equator. The Kelvin wave plays a fundamental role
in the ocean tides and, through el Niño Southern Oscillation, global climate. These
waves move non-dispersively at the non-rotating gravity wave speed. They share
the spectrum with freely propagating Sverdrup–Poincaré waves, yet at frequencies
beneath 2Ω become the sole propagating hydrostatic mode. In the laboratory, Kelvin
waves are often made in a two-layer stratification, so as to slow down the gravity
wave speed. A pristine experiment, however, is just the single-layer homogeneous
rotating fluid. Here the choice of a thin layer favours Kelvin waves trapped within
a distance (gH )1/2/Ω of the sidewall boundary. The mountain (15 cm diameter, 4 cm
high) provides oscillatory forcing by varying the rotation rate periodically about
2.2 s−1. The Kelvin wave emerges (figure 11) with rapid, cyclonic propagation. Several
other dynamical events accompany it: non-hydrostatic inertial waves of the same
frequency propagate directly away from the forcing region, with reflections from
the boundary forming a set of concentric rings. Phase propagation is indicated with
arrows. Another interesting signal involves nonlinear eddy vortex generation, faintly
visible as cyclonic depressions in the fluid surface to the left of the forcing area. At
higher amplitude, these become very strong (not shown).

3.5. Rossby waves excited by a mountain in a fluid at rest: oscillatory case

The paraboloidal free surface provides a mean potential vorticity field that acts as
a polar β-plane, that is, the polar region of a spherical rotating planet. In this



402 P. B. Rhines, E. G. Lindahl and A. J. Mendez

Figure 11. Waves generated by oscillating the fluid above a small mountain located near 6
o’clock, The six frames are at 2/3 s intervals (left to right, top to bottom).The arrows indicate
phase progression of the Kelvin wave (cyclonically), inertial waves near the source (toward the
source) and concentric rings radiating outward (which are reflections from the sidewall, with
energy flux inward toward the centre). Ω = 2.2 s−1, forcing frequency = 1.18 s−1, H = 5 cm.
Arrows indicate phase propagation (leftmost: Kelvin wave; others: inertial waves). A movie is
available with the online version of the paper.

experiment, Rossby waves are generated by oscillating the mountain periodically,
with no prior mean flow. These waves have simple analytical solutions in the form
of Bessel functions (Rhines 1969a, b, 2006a–c). Planetary β is simulated by the
potential vorticity gradient, −f ∇h/h, for a depth profile h = h0 + br2 which varies
as 2f br/(h0 + br2), increasing outward and then eventually decreasing. Here, h0 is
sufficiently large that the potential-vorticity gradient increases approximately as r .
On the Cartesian β-plane, Green’s function for this problem (figure 12) is a product
of a Bessel function and a westward propagating sinusoid (Rhines 1977). The wave
equation and its solution are:

∂

∂t
∇2ψ + β

∂ψ

∂x
= δ(x, y)e−iωt ,

ψ = exp(−iαx − iωt)H (2)
0 (αr)

∼ (2/παr)1/2 exp
(
−iα(r + x) − iωt + 1

4
π
)

(αr � 1),

α = β/2ω, r2 = x2 + y2.

Here, ψ is the streamfunction, (x, y) are eastward and northward coordinates, t is
the time. δ(�) is the Dirac delta function, and H

(2)
0 is the Hankel function (complex

Bessel function) of the second kind. The far-field approximation on the third line
shows that the wave-crests are parabolas, r + x = constant, which open westward,
and sweep westward with time as they collapse on the negative x-axis. The figure



Optical altimetry 403

1.5

1.0

0.5

0

–0.5

–1.0
1.5

1.0
0.5

0
–0.5

–1.0
–1.5 –4

–2

0

2

Figure 12. Green’s function for Rossby waves on a Cartesian β-plane. A ‘tweak’ of wind-stress
curl, oscillating at a single frequency, produces a pressure (or streamfunction) field with
parabolic wave crests, here viewed from the southwest.

shows the pressure or streamfunction, or surface elevation, viewed from southwest
of the singular region of vorticity forcing (which corresponds to a less localized
distribution of stress, essentially dying off as r−1 from the origin). Green’s function
shows short waves radiating east from the forcing region, while long waves radiate
west, as expected from ray theory. The group velocity, whose magnitude happens to
be equal to the westward component of phase speed, varies with direction, being very
much faster in the western sector than to the east. However, the energy density varies
as the square of the slope of the pressure field, and is hence larger to the east. The
net result is that the energy flux in this Green function (the product of energy density
and group velocity) is equal in all directions.

On the polar β-plane, and confined within cylindrical boundaries, and with
substantial Ekman friction, one does not see as many wave crests. The eigenmodes
for this problem are cylindrical Bessel functions, with the interesting property that
the travelling modes have spiral wavecrests crossing latitude circles.

The experiment uses a spherical-cap mountain at 8 o’clock in the 1m diameter
cylindrical container (figure 13) with periodic oscillation of the table rotation rate
(which is under precise computer control). The image, from shortly after onset of
the oscillation, indeed shows the short wavecrests east of the mountain. West of
the mountain a dark spiral band appears. Wavecrests tilt poleward with respect to
latitude circles, analogous to the long waves west of the origin on the Cartesian β-plane
(figure 12). The ray paths for Rossby waves on a sphere are actually great circles, and
in the experiment we thus expect the long waves to have a turning point near the
North Pole, and to return southward. However, they seem to decay frictionally near
the Pole, before doing this. As expected, all the wavecrests sweep westward with time.

Another notable feature of the simulation is the spiral wave pattern above the
mountain. This is frequently seen, and is a topographic wave (Rhines 1969a, b), in
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Figure 13. Rossby wave pattern with generation by oscillating (in the zonal direction) a small
spherical-cap mountain at the base of the fluid. Ω =2.23 s−1. A movie is available with the
online version of the paper.

essence a miniature of the basin-filling Rossby waves. The winding of wavecrests into
spirals has strong consequences dynamically. With increasing slope of the free surface,
and hence increasing horizontal pressure gradient, the speed of the horizontal currents
increases in proportion. Particles drifting with the fluid illustrate this vividly in videos.
The effect is a kind of group-velocity based shear dispersion; variations in the group
velocity of the topographic wave in the azimuthal direction round the mountain
cause the free-surface, the pressure and the potential vorticity to wrap into a tight
spiral with regions of steep gradient (hence high velocity). The altimetric view of the
pressure field contrasts with the more traditional view of such an experiment using
deformed dye surfaces, which is shown by Rhines (2006a, c). A movie is available
with the online version of the paper.

3.6. Rossby waves excited by a mountain: with mean zonal flow

The Rossby waves most evident to us are standing waves in the westerly winds of
the atmosphere. They exist on a potential vorticity gradient more complex than the
simple β-effect and a background westerly wind, U , that varies with latitude, yet
Rossby’s original (1939) ‘trough formula’ for the east–west phase speed of waves, c,
in the barotropic mode,

c = U − β

k2

is a useful approximation (k, l are the east and north wavenumbers, respectively). The
complete linear theory (Lighthill 1967; McCartney 1975) shows stationary (c = 0) lee
Rossby waves with the dispersion relation

k((k2 + l2) − β/U ) = 0.

The wave pattern develops semicircular wavecrests within a circular locus extending
eastward from the mountain. The wavelength everywhere in the pattern is 2π(U/β)1/2.
The diameter of this locus of wave activity expands downstream with time, at a rate
2U . In this experiment, the polar β-plane has a stationary mountain and is excited
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by imposing a solid-body eastward mean zonal flow. This is done with a computer-
controlled change of rotation rate; in various experiments, the table rotation is ramped
steadily downward or changed abruptly, the flow allowed to come back to rest, and
then changed again abruptly. Both techniques sweep through the essential parameter
space of Rβ = βd2/U , where d is the radius of the planform of the mountain (the
other essential parameter is its fractional mountain height, h/H ; it is assumed that
Rossby and Ekman numbers are both very small).

The flow develops a rich set of phenomena (figure 14). In this instance the ‘eastward’
(cyclonic) zonal flow with angular velocity 2.24 × 10−2 s−1 (Ro =1.0 × 10−2; Rβ = 3.8)
develops a train of lee Rossby waves with zonal wavenumber about 10. The predicted
wavelength, 2π(U/β)1/2 is 22 cm, which is comparable with that observed; a more
exact theory for cylindrical geometry is given by Rhines (2006c). Directly over the
mountain, instead of a simple Taylor column, an ‘arrested’ topographic wave forms a
spiral of surface elevation. This resembles the transient spiral in figure 13; however,
it is steady. The slope of the surface, proportional to geostrophic streamfunction,
involves intense jets winding round the mountain and then extending downstream.
The jet-like concentration of zonal flow extends upstream as well. Particle paths
(figure 14b) approach the mountain at its ‘northern’ most latitude, wind round its lee
side, and then shoot off into the downstream wake. The once-per-second exposure of
the particle trajectories gives an impression of the regions of strong flow.

There is a large region of nearly stagnant fluid blocked by the mountain. It radiates
upstream as a long Rossby wave on nearly vanishing intrinsic frequency (the k =0
root of the dispersion relation above). This could be called a ‘Lighthill mode’, (after
Lighthill 1967), essentially the anomalous long Rossby wave that can stem the current
and propagate upstream. Its group velocity relative to the zonal current is ∼ βd2.
More exactly, each Fourier component with radial wavenumber l, forced by the
topography has an intrinsic group velocity β/l2 in the limit of a vanishing intrinsic
frequency. Relative to a mean eastward (‘westerly’) flow with speed U , the group speed
is U − β/l2, and hence those Fourier components of the topographic excitation with
β/l2 >U can move upstream. Blocking tends to the significant, therefore, when Rβ > 1.
However, it is clear that the zonal flow is so greatly modified from the originally
imposed solid-body rotation that more elaborate theory is required. Further discussion
is given by Rhines (2006c).

It is interesting that no inertial waves are visible with cyclonic mean flow, whereas
they were strongly generated with anticyclonic flow (figure 9). In this experiment,
surface evaporation again drives fine-scale convective cyclones which are visible
particularly in the stagnant upstream wake. In regions of significant shear these
become roll-convection cells. They are a useful tracer of the circulation, and are of
interest in their own right.

Standard dye-injection patterns can be viewed in combination with altimetric
images, by balancing the ambient light level with the altimetric light source. In a
standing Rossby wave run with similar parameters to that just described, dye injected
upstream of the mountain traces out the jet- and lee-wave pattern, and outlines the
upstream blocked region (figure 15).

4. Experimental technique 2. Preliminary results for quantitative determination
of slope and velocity

To recover the surface-slope vector, and hence the field of geostrophic velocity,
and also to integrate to determine quantitatively the shape of the free surface, we
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(a)

(b)

Figure 14. (a) Altimetric image of standing Rossby waves in the lee of a spherical cap
mountain located at 2 o’clock. A cyclonic (‘eastward’) solid-body flow is imposed by steadily
decreasing the rotation rate. The winding action of topographic waves above the mountain
creates a system of concentrated jets both upstream and downstream. Fluid is blocked by the
mountain, and is nearly stagnant there. Crater-like convective cells due to surface evaporation
form in this region, and convective rolls delineate regions of shear. (b) Streak image of particle
paths superimposed on the surface elevation field. 120 exposures, once per second. Strong
flow is visible within the jets wrapped round the mountain and extending upstream and
downstream. The atmospheric ‘tip-jet’ at the southern end of Greenland is an example of such
topographic concentration of flow. A movie is available with the online version of the paper.

can put a transparent image of a fine pattern of gridlines, or speckled field of dots
or amorphous shapes, just beneath the light source. Recall that the optical system
expands the source (which is close to the centre of curvature of the paraboloid at
its apex) to paint out the entire fluid surface, and will project any information from
the source plane in sharp focus, onto the field (for example, the inscribed wattage of
an incandescent bulb used as a source). A reference image is made, with solid-body
rotation in the absence of any flow. In the presence of flow, the image is distorted.
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Figure 15. By adding background lighting, dye patterns can be viewed with altimetric images.
The Rossby-wave wake downstream of the mountain is seen both in the pressure and dye
fields, as is the rapid upstream penetration of the blocking region. Here dye enters upstream
of the mountain from a traversing arm (thin black line) that moves back and forth along
a radius. The cyclonic mean flow was suddenly initiated at time t = 0, and the image is at
t =140 s. Ω = 2.2 s−1, initial U = 7 × 10−3 m s−1 at r = 0.4 m; blocking parameter βd2/U = 3.1.

The displacement of each dot (or the distortion of the image) forms a vector field
which can be recovered with standard PIV (particle imaging velocimetry) techniques.
The deflection of a dot in the pattern is proportional to the slope of the free surface
relative to the reference, with a sensitivity function that depends upon radius. This
sensitivity variation arises from variation in radius of curvature of the paraboloid,
with distance from the axis. We give here only preliminary results for this quantitative
method, which is still a work in progress. Subsequent to the first drafting of this
paper, a promising, complementary method of quantifying optical altimetry has been
developed, which we report separately (Afanasyev, Rhines & Lindahl 2007).

In figure 16, the table rotation rate is altered in 31 steps, each of 0.001 rad s−1. A
single diameter of the circular image of a ‘speckle pattern’ is sampled at each step,
and plotted against radius. When differenced with respect to the original image, this
represents a well-controlled azimuthal flow, differing at each step by 0.25 mm s−1 at
radius 25 cm, and progressing to 7.75 mm s−1 after 31 steps.

The PIV-estimated displacements for a 6 × 10−3 s−1 solid-body velocity field, are
mapped relative to the base rotation rate of 2.2 s−1 (figure 17). The mottled pattern
used for the distortion analysis is shown, as is the image of a transparent centimetre-
stick. The optical distortion of the plastic scale gives an idea of the correction to be
applied to turn pattern displacement into radial slope of the fluid surface.

5. Concluding remarks
Observing the full surface-pressure field of a large fluid experiment provides great

stimulus to understanding, whether or not the visual images are analysed to give the
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Figure 16. Hovmoeller (radial coordinate/time) plot of altimetric image of a homogeneous
speckle pattern, as the fluid rotation changes in steps of 10−3 s−1 from 2.2076 to 2.1711 s−1. As
the rotation rate decreases, the paraboloid relaxes, and the image contracts toward the centre
(where it would be a small dot at zero rotation). This indicates the principle of quantifying the
slope of the fluid surface by imaging the distortion of a complex image. Each step corresponds
to an azimuthal velocity of 0.25 mm s−1 at r = 25 cm, indicating the sensitivity of the method.
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Figure 17. Displacement vectors for a +6 × 10−3 change in the rotation rate of the fluid.
The speckle pattern used for PIV analysis is shown, and the image of a uniform metre stick
also shows the optical distortion that must be corrected to produce geostrophic azimuthal
circulation.

quantitative field of slope, elevation, hydrostratic pressure, and geostrophic velocity.
We had no idea, for example, how prevalent inertial oscillations are in nominally
small-Rossby-number flows (this is also an observed characteristic of ocean and
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atmosphere), or how ubiquitous are fine-scale evaporative convection cells and
rolls in experiments with a free upper surface. We have also described the natural
combination of AIV with PIV, simple streak photography, and simple dye-trace
photography, to give independent observations of the surface velocity, pressure and
Lagrangian distortion of marked fluid. In principle, the difference between AIV- and
PIV- deduced velocities is the ageostrophic velocity, a quantity of great interest. This
would require some effort to measure accurately, however.

The examples here have all involved a homogeneous, incompressible fluid, except
in the appearance of fine-scale convection cells. Experiments with stratified fluid,
for example baroclinic instability and geostrophic turbulence, are well-served by this
technique, and will be reported in Afanasyev et al. (2007). It would be straightforward
to combine an interface-imaging technique (based on optical density of a dyed layer
(e.g. Holford & Dalziel 1996; Williams, Read & Haine 2004) or optical rotation by
dilute limonene (orange peel) (Hart & Kittelman 1986)) with surface altimetry to
recover the full baroclinic dynamics of a two-layer system.

Perhaps the greatest impediment to good altimetric images comes from extraneous
ripples due to building vibration, or to tides due to poor levelling of the rotating table.
To some extent these can be minimized using wave absorbers (and proper levelling).
However, even in their presence we have found image averaging to be very effective
in producing clear movies and still images of the low-frequency phenomena.

Animated movies of these phenomena are particularly valuable, and samples of
these are available with the online version of the paper, and more extensively at
http:/www.ocean.washington.edu/research/gfd. While the AIV technique is designed
for experiments in which Coriolis effects are strong, it is possible to use reflective
imaging for flows at such high Rossby number that Coriolis effects are small, and
hence this becomes a tool of more general interest in non-rotating fluid dynamics.
For example, gravity waves are readily observed in this apparatus.

The AIV method provides inspiring demonstrations with just an incandescent light
bulb and video camera. A scaled-down apparatus for demonstrations is described in
Appendix B.

We feel some kinship with and debt to amateur astronomers. For example Russell
W. Porter in 1923 wrote that:†

For it is true that astronomy, from a popular standpoint, is handicapped by the inability of the average

workman to own an expensive astronomical telescope. It is also true that if an amateur starts out to build

a telescope just for fun he will find, before his labors are over, that he has become seriously interested in

the wonderful mechanism of our universe. And finally there is understandably the stimulus of being able

to unlock the mysteries of the heavens by a tool fashioned by one’s own hand.

This work was supported by the G. Unger Vetlesen Foundation of New York, and
the National Science Foundation, Ocean Sciences, to whom we are most grateful.

Appendix A. Notes on manipulation of images
We have used a standard Mini-DV camcorder (SONY DXC1000) to record videos

used in this paper. The native resolution is 720 × 480, although recently released HD
(high-definition) camcorders are now becoming available. The DV-format video was
then converted to digital AVI format using standard image-capture software. We

† http://www.stellafane.com/atm/atm main.htm
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have found that for many purposes, the simple S-video output of the camcorder was
quite adequate for qualitative imaging. This signal was taken off the rotating table
through slip-rings, to a DV format tape recorder. Dedicated laboratory digital video
cameras are available with much greater resolution; for example our current work
uses a 3 megapixel (2048 × 1536), 12 frame per second, Micron CMOS MT9T001
image sensor.

Sequences of still images with very high resolution can of course be recorded with
modern digital still cameras, and this is appropriate to slowly varying flows (capture
rates of several frames per second are readily achieved, limited ultimately by flash
memory size or the download transfer rate). It is desirable to have the viewfinder
image available at the time of acquisition. Still cameras such as the Canon EOS series
have resolutions currently up to 12 megapixels. Images are communicated from the
rotating table through slip-rings and can be viewed on a computer monitor, fully
controlled by software.

There is more to resolution than imaging, however. A water surface is never really
‘free’. If it is not extremely clean, surface tension will damp fine-scale features in the
surface-height field. This argues for using a relatively large scale for the experiment.
However, the system as described here, a 1 m rotating cylinder, has the acuity to
record evaporative convection cells with diameter ∼5 mm having very small velocities
and surface deformation of order 1 µm.

Appendix B. A scaled-down apparatus for classroom demonstrations.
The 1m diameter rotating table we use cost about $100 000 to build from scratch,

and is mounted on a vibration reducing floor isolated from the rest of the building
(see Rhines 2006b). However, the experiment can be rescaled down to about 25%
of this size and carried out more economically. For less than $100 one can buy a
potters ‘banding’ wheel with fine strong bearings (for example a Shimpo BW-30M,
www.shimpoceramics.com), add a simple rim-drive with a d.c. motor (driven either
through a small idler wheel or an elastic band round the entire rim). Stepper motors
are also inexpensive and give precise speed control at the expense of some vibration.
These may be driven with an elastic band round the rim of the table. This particular
potters wheel is smaller (25 cm diameter) than our rotating table, yet it is strong and
can support vessels larger than its diameter. The central radius of curvature will be
50 cm at a rotation rate Ω =4.4 s−1 or 42 r.p.m. A small video camera, recording
internally, can be mounted adjacent to the light source at this height. Viewing the
images in real-time can now be readily achieved with an inexpensive laptop computer
on the rotating platform, with wireless high-speed link to a computer on the non-
rotating lab benchtop.

Appendix C. The focal diameter of a paraboloid with point light-source at
finite distance

A point source of light on the axis of a paraboloid z = br2, with focus at z = 1/2b,
focuses perfectly only when the light is at z → ∞. For a source at z = Zs , a ray with
angle θs with respect to the axis of symmetry strikes the surface at z = Z1, r = R1,
reflects through an angle 2α and strikes the axis at z = Zr,r = 0 at an angle θr . We
want an expression Zr = f (θs, Zs), which is determined by the following relations:

Z1 = bR2
1,
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tan θs = R1/(Zs − Z1),

tan θr = R1/(Zr − Z1),

tan ξ = (2bR1)
−1,

θr = θs − 2α,

Aα = ξ + θs − 1
2
π.

Here, ξ is the angle between the surface normal and the z-axis and A= sgn(2Zf −Zs),
(sgn means ‘sign of’), determines whether the source elevation is above or below the
image. For a parabolic dish of finite diameter d , tan θs < d/2Zs , and as θs sweeps over
this range, the range of values of Zr (θ, Zs) is determined. Finally, this is converted to
the diameter of the sharpest focus by finding the plane Z = Z0 which minimizes the
range of (Zs − Z0)tan θr . This sharpest focal diameter is plotted as a function of the
height of the light source in figure 1.

REFERENCES

Adrian, R. J. 2005 Twenty years of particle image velocimetry. Exps. Fluids 39, 59–169.

Afanasyev, Y. D., Rhines, P. B. & Lindahl, E. G. 2007 Altimetric imaging velocimetry: investigation
of emission of inertial and Rossby waves by baroclinally unstable flows. J. Atmos. Sci.
submitted.

Barbour, D. A. 2000 Understanding Foucault; a primer for beginners. http://www.atmsite.org/
contrib/Harbour/Foucault.html.

Dabiri, D. & Gharib, M. 2001 Simultaneous free-surface deformation and near-surface velocity
measurements. Exps. Fluids 30, 381–390.

Fu, L. L., Cazenave, A. 2001 Satellite Altimetry and Earth Sciences, A Handbook of Techniques and
Applications. International Geophysics Series, vol. 69. Academic, San Diego.

Hart, J. E. & Kittelman, S. 1986 A method for measuring interfacial wave fields in the laboratory.
Geophys. Astrophys. Fluid Dyn. 36, 179–185.

Haidvogel, D. & Rhines, P. B. 1983 Waves and circulation driven by oscillatory winds in an
idealized ocean basin. Geophys. Astrophys. Fluid Dyn. 25, 1–65.

Hide, R., Ibbetson, A. & Lighthill, M. J. 1968 On slow transverse flow past obstacles in a rapidly
rotating fluid. J. Fluid Mech. 32, 251–272.

Holford, J. M. & Dalziel, S. B. 1996 Measurements of layer-depth in a two-layer flow. Appl. Sci.
Res. 56, 191–207.

Kunze, E. & Boss, E. 1998 A model for vortex-trapped internal waves. J. Phys. Oceanogr. 28,
2104–2115.

Lighthill, M. J. 1967 On waves generated in dispersive systems by travelling forcing effects, with
applications to the theory of rotating fluids. J. Fluid Mech. 27, 725–752.

Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.

McCartney, M. 1975 Inertial Taylor columns on a β-plane. J. Fluid Mech. 68, 71–95.

Newton, I. & Huygens, C. 1672 An accompt of a new catadioptical telescope invented by Mr.
Newton. Phil. Trans. R. Soc. Lond. 81.

Rhines, P. B. 1969a Slow oscillations in an ocean of varying depth. Part 1 Abrupt topography.
J. Fluid Mech. 37, 161–189.

Rhines, P. B. 1969b Slow oscillations in an ocean of varying depth. Part 2. Islands and seamounts.
J. fluid Mech. 37, 190–205.

Rhines, P. B. 1977 The dynamics of unsteady currents. In The Sea, vol. 6, (ed. E. D. Goldberg),
pp. 189–318. John Wiley.

Rhines, P. B. 1979 Geostrophic turbulence. Annu. Rev. Fluid Mech. 11, 404–441.

Rhines, P. B. 1989 Deep planetary circulation over topography: simple models of mid-ocean flows.
J. Phys. Oceanogr 19, 1449–1470.

Rhines, P. B. 2006a Geophysical Fluid Dynamics laboratory, University of Washington,
http://www.ocean.washington.edu/research/gfd



412 P. B. Rhines, E. G. Lindahl and A. J. Mendez

Rhines, P. B. 2006b Wiki: laboratory fluid experiments for research and teaching.
http://gfd.ocean.washington.edu/wiki

Rhines, P. B. 2006c Jets and Orography: Idealized Experiments with Tip-Jets and Lighthill blocking
J. Atmos. Sci. submitted.

Williams, P. D., Read, P. L. & Haine, T. W. N. 2004 Measuring the internal interface height
field at high resolution in the rotating, two-layer annulus. Geophys. Astrophys. Fluid Dyn. 98,
453–471.


